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ABSTRACT: The Lead and Copper Rule (LCR) addresses lead
in drinking water through utility-centric monitoring in high risk
homes, corrosion control, and public education. These utility-
centric activities, however, do not provide adequate information on
lead concentrations in individual homes and leave an unknown
number of consumers at risk from drinking water lead. To assess
the number of consumers at risk from drinking elevated lead
concentrations, we mined 166,554 lead samples taken for LCR
compliance in Iowa and developed a new approach for estimating
the number of consumers at risk. We estimate that 65,000 ±
14,000 people in Iowa are at risk from drinking water lead above
the U.S. EPA action level of 15 parts per billion (ppb) each year.
We further explored the average household sampling rates of
community water systems (CWSs) of different population sizes,
where, overall, 8.6% of homes in an Iowa CWS are sampled. Our estimates indicate that, even in the absence of a lead-in-water crisis,
a significant number of people are at risk from lead concentrations exceeding available guidelines, raising concerns about the severity
of baseline lead concentrations in drinking water nationwide. Our analysis highlights that consumer-centric lead in drinking water
policies and avoidance strategies are needed to ensure public protection.

■ INTRODUCTION

The United States (U.S.) Centers for Disease Control and
Prevention (CDC) states that no level of lead exposure is safe
for children.1 The toxic effects of lead are well known,2 and
elevated blood lead levels (BLLs) are linked to adverse health
and developmental effects especially in young children.3

Although U.S. regulations have dramatically reduced lead
exposure in recent decades,4 substantial evidence supports
significant physiological, behavioral, and academic impairments
in children with BLLs as low as 2 μg/dL.5,6 Because there is no
way to treat low-level lead toxicity,7 the American Academy of
Pediatrics (AAP) recommends reducing or eliminating all
sources of lead before exposure as the most reliable and cost-
effective measure to protect the public.7

Lead-based paint, dust, and soil have been historically
considered the major sources of lead exposure, whereas
drinking water was not widely recognized as a significant
source.8 However, since the Washington, DC,9 and Flint water
crises10 linked lead in drinking water to public health impacts,
the U.S. Environmental Protection Agency (EPA) estimates
drinking water can contribute about 20% of a person’s lead
exposure and contribute from 40% to 60% for formula-fed
infants.11 In addition to the EPA’s estimate, other sources
estimate drinking water can contribute between 7% and 20% of

a person’s lead exposure.12−14 Despite this data, some state
agencies continue to downplay this source of exposure for
children.15−18

To address lead in drinking water, the U.S. EPA enacted the
Lead and Copper Rule (LCR) in 1991.19 The LCR requires
community water systems (CWSs) to monitor at their
consumers’ taps.19,20 A CWS is a public water utility that
serves a community of at least 25 residents or 15 homes year
round.19 Lead concentrations cannot exceed an action level
(AL) of 15 parts per billion (ppb) in more than 10% of tap
water samples (90th percentile approach) collected during any
monitoring period [40 C.F.R. §141.80(c)].19 If CWSs exceed
the lead AL, they must optimize corrosion control treatment
(CCT) and, if necessary, replace lead service lines (LSLs) in
the distribution system.19,20

As CWSs comply with the LCR, they carry out utility-centric
activities that include the 90th percentile approach, limited
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sampling requirements, and limited direct mitigation efforts.
These activities leave an unknown number of consumers at risk
from drinking elevated lead concentrations.21 Data exist to tie
water lead levels to BLLs22 during the Washington, DC,9 and
Flint water crises,10,23,24 to lead plumbing systems,25 and to
lead contaminated wells in some developing countries.26

Studies have also assessed the health risk of lead exposure,
such as the chronic daily intake.27−29 However, there is little
data estimating the magnitude of consumers at risk from
drinking elevated lead levels in the absence of events or
conditions that release high lead concentrations into the
water.21 Estimating populations at risk from water lead is
necessary as more communities learn of elevated lead in their
homes’30,31 and schools’32,33 drinking water, raising questions
about the severity of baseline lead concentrations nation-
wide.34

To estimate the severity of baseline lead concentrations
statewide, we mined and analyzed lead samples taken for LCR
compliance in Iowa. From this data, we calculated the percent
of lead samples exceeding concentrations for four widely
referenced drinking water guidelines, including EPA’s LCR AL
of 15 ppb,19 the World Health Organization’s (WHO)
drinking water guideline of 10 ppb,35 the U.S. Food and
Drug Administration’s (FDA) bottled water regulation36 of 5
ppb (also the Canadian drinking water guideline),37 and the
recent AAP recommendation for school drinking water
fountains of 1 ppb.7 We further used the LCR samples to
estimate the potential magnitude of consumers in Iowa at risk
from drinking elevated water lead. In this letter, we define
homeowners as “exposed” if they are at risk for having lead
levels exceeding a lead guideline in their community tap water.

■ MATERIALS AND METHODS

Iowa LCR Data. To collect data on lead in drinking water,
we created Python scripts to mine 166,554 first draw lead
samples taken for EPA LCR compliance over a 29-year period
(January 1, 1991, to December 31, 2019) and CWS population
counts from the Iowa Drinking Water Watch (DWW)
database.38 DWW is an EPA product associated with the
Safe Drinking Water Information System (SDWIS)39 and is
accessible through the Iowa Department of Natural Resources
website. We accounted for population and housing changes
from 1991 to 2019 using Iowa county population and housing
unit counts from the U.S. Census Bureau.40−42 The Center for
Health Effects of Environmental Contamination (CHEEC),
which maintains databases related to CWS source water and
treatment plant configuration, provided information on 2017
CWS CCT use. Iowa has an estimated 160,000 lead service
lines,43 where CWSs that use CCT primarily use corrosion
inhibitors like phosphate. Further details are described in the
Supporting Information.

■ RESULTS AND DISCUSSION

Lead Concentrations in Iowa Drinking Water. To
evaluate the distribution of lead concentrations, we plotted the
cumulative distribution function of the first draw LCR samples
taken in Iowa and grouped them by four lead guidelines
(Figure 1). Of the 166,554 lead samples taken, 95,203 (57%)
were below 0.1 ppb (and are not shown on Figure 1). About
3% of the samples (n = 5145 samples) exceeded the EPA LCR
AL of 15 ppb in the past 29 years. In addition to the EPA LCR,
we found that about 5% of the samples exceeded the WHO

guideline of 10 ppb (n = 8724),35 12% exceeded the U.S. FDA
regulation for bottled water at 5 ppb (n = 20,331),36 and
almost one-third of the samples exceeded the AAP
recommendation of 1 ppb (n = 53,622).7 When compared
to first draw lead samples taken during crisis events,9,24 i.e.,
Flint (n = 268) and Washington, DC (n = 6162), LCR samples
taken in Iowa exceed each lead guideline at a lower proportion
(Figure S1). For example, in Iowa, 3.1% of the LCR samples
exceeded the 15 ppb EPA AL compared to 16% of the samples
taken in Flint and 49% in Washington, DC. We find it
concerning that even in the absence of a water crisis, 8724
LCR samples exceeded 10 ppb which has been proposed as the
“Find and Fix” trigger level in the LCR revisions (LCRR).44

Iowans Exposed to Elevated Lead Concentrations.
Over the last 29 years, active CWSs (1080 out of 1771
systems) took 156,390 out of the 166,554 (94%) LCR samples
in Iowa, annually sampling about 0.5% of 1,150,000 house-
holds on Iowa community water (n = 2.84 million Iowans or
89% of the state population). The utility-centric LCR
monitoring approach leaves millions of individual homes not
sampled annually and an unknown number of consumers at risk
from drinking lead in water. To estimate the number of
consumers in Iowa, we used the LCR samples taken in active
CWSs and considered three approaches (Supporting Informa-
tion). A best-case scenario approach would be to count only
the homes with samples exceeding a specific lead guideline as
exposed. Using this approach, we estimate that 850 ± 90
people annually (0.03% people on CWSs) are exposed to lead
levels exceeding 15 ppb in Iowa. At the other extreme, a worst-
case scenario approach would assume every home in a CWS is
exposed to elevated water lead if at least one lead sample is
greater than a specified lead guideline. Using this approach, we

Figure 1. Cumulative density function of first draw lead samples taken
in community water systems (CWSs) for the U.S. Environmental
Protection Agency’s Lead and Copper Rule (EPA LCR) compliance
in Iowa from 1991 to 2019 (n = 166,554 samples). 95,203 samples
were below 0.1 ppb or not given a numerical value. The American
Academy of Pediatrics (AAP) recommendation for schools is 1 ppb.
The U.S. Food and Drug Administration (FDA) regulation is 5 ppb
for bottled water. The World Health Organization (WHO) drinking
water guideline is 10 ppb. The EPA LCR regulation is 15 ppb for first
draw tap water samples. The number in parentheses is the total
number of samples exceeding each lead target. CWSs of every activity
status (i.e., active or inactive) are included.
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estimate that over one million Iowans are exposed to lead
levels exceeding 15 ppb annually (1,030,000 ± 147,000 people
or 36%). The large range estimated from the two approaches
(850 to 1 million people; 0.03 to 36% of Iowans on CWSs)
highlights the challenge of estimating how many people are at
risk for having elevated water lead.
To overcome this challenge, we developed a new approach

where population was estimated from the proportion of
samples exceeding a guideline within each CWS’s set of
samples. This sample-proportional approach used the LCR
samples to determine an exceedance rate for each CWS and
used that rate to estimate the homes exposed within in each
CWS. Specifically, we calculated the fraction of samples
exceeding a lead guideline annually within each CWS
(Pbsamples>15 ppb / total Pb samples taken). We then multiplied
each fraction by the population served by each CWS and
summed the number of people exposed in each CWS for each
sampling year. The total population for each CWS was divided
by the total sampling years. Finally, each CWS average was
summed to estimate the average Iowa population exposed to
each lead guideline annually (eq 1)
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Using this sample-proportional approach, we estimate
65,000 ± 14,000 people in Iowa are exposed to lead
concentrations greater than 15 ppb every year (compared to
850 or 1 million from the only or every home approaches)
(Figure 2). This estimate is about 2% of the Iowa population
who drink community water. Using the same approach for the
other three lead guidelines, we find that about 4% (113,000 ±
18,000 people) are exposed annually to lead concentrations
exceeding the WHO guideline and LCRR proposed trigger
level of 10 ppb, 9% (261,000 ± 30,000) exceeding the FDA
regulation of 5 ppb, and over a quarter (26% or 738,000 ±
62,000) exceeding the AAP recommendation of 1 ppb (Table
S2).
Note that our estimates are based on LCR samples taken in

CWSs that, if sampled correctly, first target older homes with
lead plumbing and LSLs before taking other representative
samples [40 C.F.R. § 141.86(a)].19 The LCR samples should
also reflect higher risk homes if the CWS has enough tier 1, 2,
and 3 sampling sites [40 C.F.R. §141.86(a)].19 In addition,
CWSs may use the same sampling sites for more than one LCR
monitoring period. Since a CWS’s LCR sampling rate (e.g.,
every six months or three years) depends on the lead
concentrations found, CWS size, public distribution pipe
material, and mitigation efforts, consumers may be at risk from
drinking water lead for months or for years. In this letter, we
try to normalize this range of uncertain risk to an annual
estimate of consumers. Lastly, our estimate includes an
unknown number of people who avoid drinking in-home tap
water,45 flush their tap before consumption,46 or use POU
filters.47,48 Despite these caveats, our estimates indicate that
even in the absence of a lead-in-water crisis and in a state with
only moderately corrosive community water49,50 (e.g., pH >
7.0 and alkalinity >50 ppm of CaCO3 or higher) a significant

percent of the Iowa population is exposed to lead levels
exceeding available guidelines.
We further evaluated whether the Iowa LCR samples

revealed any trends based on CWS size and CCT usage. The
LCR requires size-based sampling and CCT criteria for CWSs
serving populations ranging from very small to very large [40
C.F.R. §141.86(c)].19 For the last four years of lead sampling,
we found no statewide statistical association (odds ratio
confidence interval = [0.62, 1.12], p-value = 0.22, Table S3)
between elevated lead concentrations found in CWSs using or
not using CCT (Supporting Information). However, the Iowa
data does highlight the large differences in the percent of
households sampled as a function of population size and CWS
size category. The average household sampling rate decreases
sharply as the CWS population served increases (Figure 3).
For very small CWSs, the rate is 14% and decreases to 3% for
small systems and then to as low as 0.2% for very large systems
(Table S4). Overall, the average household sampling rate for a
CWS in Iowa is 8.6%. For Iowa, the CWS size-based LCR
sampling criteria results in a 100-fold greater chance a
consumer is likely to have their home sampled for lead when
they live in a very small CWS (∼14%) compared to a very
large CWS (∼0.2%).
We expected to see more sampling in smaller CWSs,

however, we also anticipated that the percent of LCR samples
with concentrations exceeding a given lead guideline would be
greater in smaller CWSs because of less stringent CCT
requirements. Interestingly, there is no trend in the average
percent of households exceeding a given lead guideline as a
function of CWS size (Figure S2). The average percent of

Figure 2. Estimated Iowa population exposed to lead levels exceeding
different lead in drinking water guidelines or regulations annually
(population/year). The estimated average populations exposed are
inside or above each bar. Population numbers are rounded off. The
number in parentheses is the percent of Iowans exposed on active
community water systems (CWSs). Population numbers are
estimated by first draw lead samples taken in active CWSs (n =
1080 systems) for EPA Lead and Copper Rule (LCR) compliance
from 1991 to 2019 (n = 156,390 lead samples). Population numbers
are calculated using the sample-proportional approach (eq 1). The
error bars signify the range of uncertainty in each estimated value.
Uncertainty calculations are described in the Supporting Information.
The American Academy of Pediatrics (AAP) recommendation for
schools is 1 part per billion (ppb). The U.S. Food and Drug
Administration (FDA) regulation is 5 ppb for bottled water. The
World Health Organization (WHO) drinking water guideline is 10
ppb. The EPA LCR regulation is 15 ppb for first draw tap water
samples.
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elevated LCR samples in a CWS only differs by a few percent
for each guideline and each CWS size category. For example,
the average percent of households in a CWS exceeding 10 ppb
ranges from 3.0% to 4.8%, where a CWS in the medium-sized
category has the highest percent exceedance, and the very
large-sized and very small-sized categories have the lowest
percent exceedance. While ideally, there would be a high
average household sampling rate (i.e., more coverage) and a
low percentage of LCR samples with concentrations exceeding
a given lead guideline (i.e., lower exceedance), the relatively
stable rates of exceedance across CWS size suggest that the
likelihood of having elevated lead levels is somewhat similar,
but that the likelihood of not knowing if you have elevated lead
levels is higher in larger CWSs. Fortunately, studies have
discussed lead mitigation strategies for communities, which
vary between sites depending on physical and community
considerations.51−53

Our estimates of the number of consumers in Iowa at risk
for drinking elevated lead concentrations in water raise
concerns about the severity of baseline lead concentrations
in drinking water nationwide. The LCR’s utility-centric
approach does not provide adequate information on lead
concentrations in individual homes, and the likelihood of not
knowing whether individual homes are exposed to elevated
lead concentrations increases significantly in larger CWSs
typically found in large cities. Our analysis emphasizes the
critical need for consumer-centric lead policies and programs
for in-home tap sampling and avoidance strategies52 that
provide more direct protection for the consumer. These
consumer-centric activities should encourage collaboration

with consumers to raise awareness about, test, and mitigate
lead in drinking water.54

Direct protection to the consumer for most water
contaminants is achieved through the U.S. EPA’s Safe Drinking
Water Act Maximum Contaminant Level (MCL) framework. If
the four current lead guidelines (1, 5, 10, and 15 ppb) are used
as a surrogate MCL for lead, our estimate of the Iowa
population annually exposed to elevated lead ranges from
65,000 people for 15 ppb to 738,000 people for 1 ppb (Figure
2). The greater than 10-fold difference in the estimated
population exposed points to the critical need for a health-
based guideline, similar to an MCL, for lead in drinking water.
While a lead MCL is not considered viable because lead
sources can come from within the home and the measured
values are semi-random even under relatively controlled first
draw protocols,55,56 our analysis reveals significant exceedance
of various water lead thresholds. The ambiguity and lack of
consensus on an in-home water lead level needed to trigger
health-based action must be addressed so consumers,
schools,54,57 and private well owners58,59 can have clear
guidance on when to implement lead avoidance strategies.
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